Abstract

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has evolved as an essential technique in structural proteomics. The use of ion mobility separation (IMS) coupled to HDX-MS has increased the applicability of the technique to more complex systems and has been shown to improve data quality and robustness. The first step when running any HDX-MS workflow is to confirm the sequence and retention time of the peptides resulting from the proteolytic digestion of the nondeuterated protein. Here, we optimized the collision energy ramp of HDMSE experiments for membrane proteins using a Waters SELECT SERIES cIMS-QTOF system following an HDX workflow using Phosphorylase B, XylE transporter, and Smoothened receptor (SMO) as model systems. Although collision energy (CE) ramp 10-50 eV gave the highest amount of positive identified peptides when using Phosphorylase B, XylE, and SMO, results suggest optimal CE ramps are protein specific, and different ramps can produce a unique set of peptides. We recommend cIMS users use different CE ramps in their HDMSE experiments and pool the results to ensure maximum peptide identifications. The results show how selecting an appropriate CE ramp can change the sequence coverage of proteins ranging from 4 to 94%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.