Abstract
At present, most mainstream algorithms for single image super-resolution (SISR) assume the image degradation process as an ideal degradation process (e.g. bicubic downscaling), which violates the actual degeneration conditions. In real-world image capturing, objects often move in a dynamic environment, and camera shake also often occurs, which results in serious blurs. Our work focuses on the task of image super-resolution with heavy motion blur, for which we adopt a network with two branches: one branch for image deblurring and the other one for super-resolution. Since the features obtained by the deblurring are rich in details, we apply their features as supplementary information to the super-resolution branch. Based on the adopted dual-branch framework, our major technical novelties lie in two novel modules: Multi-Scale Feature Fusion (MSFF1) module which fuses features of different scale from the deblurring branch to get local and global information, and Multi-Stage Feature Fusion (MSFF2) module which further filters useful information with attention. We evaluate the proposed method under various blur scenarios on the benchmark datasets, demonstrating competitive performance against existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.