Abstract
Triple-negative breast cancer (TNBC) poses a challenging prognosis due to early metastasis driven by anoikis resistance. Identifying crucial regulators to overcome this resistance is vital for improving patient outcomes. In this study, a genome-wide CRISPR/Cas9 knockout screen in TNBC cells has identified tyrosine-protein phosphatase nonreceptor type 14 (PTPN14) as a key regulator of anoikis resistance. PTPN14 expression has shown a progressive decrease from normal breast tissue to metastatic tumors. Overexpressing PTPN14 has induced anoikis and inhibited cell proliferation in TNBC cells, while normal human breast cells are unaffected. Mechanistically, PTPN14 is identified as a key factor in dephosphorylating breast cancer antiestrogen resistance 3, a novel substrate, leading to the subsequent inhibition of PI3K/AKT and ERK signaling pathways. Local delivery of in vitro transcribed PTPN14 mRNA encapsulated by lipid nanoparticles in a TNBC mouse model has effectively inhibited tumor growth and metastasis, prolonging survival. The study underscores PTPN14 as a potential therapeutic target for metastatic TNBC, with the therapeutic strategy based on mRNA expression of PTPN14 demonstrating clinical application prospects in alleviating the burden of both primary tumors and metastatic disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.