Abstract

Local simulations of the magnetorotational instability (MRI) in accretion disks can exhibit recurrent coherent structures called channel flows. The formation and destruction of these structures may play a role in the development and saturation of MRI-induced turbulence, and consequently help us understand the time-dependent accretion behaviour of certain astrophysical objects. Previous investigations have revealed that channel solutions are attacked by various parasitic modes, foremost of which is an analogue of the Kelvin-Helmholtz instability. We revisit these instabilities and show how they relate to the classical instabilities of plasma physics, the kink and pinch modes. However, we argue that in most cases channels emerge from developed turbulence and are eventually destroyed by turbulent mixing, not by the parasites. The exceptions are the clean isolated channels which appear in systems near criticality or which emerge from low amplitude initial conditions. These structures inevitably achieve large amplitudes and are only then destroyed, giving rise to eruptive behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.