Abstract

Because protons in fat do not exhibit a temperature-dependent frequency shift, proton resonance frequency shift (PRFS)-based MR thermometry always suffers from disturbances due to the presence of fats or lipids. A new fat suppression method for PRFS-based MR thermometry is proposed to obtain accurate variation of phase angle. Similar to the approach of separating fat and water with the two-point Dixon technique, we first scan a complex MR image for reference and then scan another complex image varying with temperature at the same TE point. Based on the conventional PRFS method, we use geometric relationships to remove the effect of fat on the variation of the phase angle. Two phantoms with different water-to-fat ratios are involved in the temperature mapping test. Experimental results show that the temperature images of two phantoms are approximated under the same conditions. The proposed fat suppression method is simple and effective for PRFS-based MR thermometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.