Abstract

의료 영상처리 분야에서의 일반적인 객체 인식 방법은 픽셀들의 밝기 정보, 형태 정보, 패턴 정보 등 다양한 컴퓨팅 처리 방법으로 수행되어 진다. 그러나 컴퓨팅 방법에 사용되는 다양한 정보들이 의미가 없을 경우 객체인식에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 의료 영상에서의 물리적인 이론에 기반한 영상처리 방법을 전처리에 활용하고자 한다. 제안된 방법은 대비 개선 작업을 주된 목적으로 하는 SWI(Susceptibility Weighted Imaging) 처리를 통해 의미 있는 전처리 작업을 수행하고, 이에 대한 결과를 텍스처 분석을 통해 MR 뇌 영상의 회백질을 효과적으로 검출하는 과정으로 구성된다. 실험결과 제안 방법은 평균 영역차이가 5.2%로 기존의 대표적인 영역분할 방법에 비해 보다 효율적임을 증명하였다. In medical image processing field, object recognition is usually carried out by computerized processing of various input information such as brightness, shape, and pattern. If the information mentioned does not make sense, however, many limitations could occur with object recognition during computer processing. Therefore, this paper suggests effective object recognition method based on the magnetic resonance (MR) theory to resolve the basic limitations in computer processing. We propose the efficient method of robust gray-white matter segmentation by texture analysis through the Susceptibility Weighted Imaging (SWI) for contrast enhancement. As a result, an average area difference of 5.2%, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.