Abstract
The Material Plasma Exposure eXperiment (MPEX) device is a steady-state linear plasma device currently in the final design phase at the Oak Ridge National Laboratory. This device will reach ion fluences up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$10^{31}\,\,\text{m}^{-2}$ </tex-math></inline-formula> and will be used to expose neutron-irradiated materials to divertor-relevant plasmas and to study the effects of plasma-material interactions. These studies will elucidate the complex effects of plasmas with divertor candidate materials capable of withstanding high heat flux and high fluences for next-generation fusion devices. Bidirectional plasma will be generated using a high-power (200 kW) helicon source. Plasma will be confined by superconducting magnets. The last plasma-facing component on the upstream side of the MPEX device is the dump, which has been designed to intercept plasma and energetic particles. The dump will have a total heat load of 9.2 kW. A copper alloy (Glidcop AL-15) was selected for use in the water-cooled flange design because of its high thermal conductivity, its retaining strength at elevated temperatures, and its ability to be used in the high-temperature braze joints used in this application. Titanium-zirconium-molybdenum (TZM) tiles are brazed to the Glidcop AL-15 flange using high-temperature braze alloy. External water-cooling channels are used on the dump flange to prevent water leakage inside the vacuum space. This article discusses the details of the high heat flux dump design, including the computational fluid dynamics (CFD) and structural analyses performed to validate the design to meet the operational requirements of the MPEX device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.