Abstract
Traffic speed deflection devices (TSDDs) have been developed since around 2000 to allow for safe and efficient structural evaluation of highway networks. One barrier to TSDD implementation is the inherent differences in deflections produced by moving truck loads and by falling weight deflectometer (FWD), the current deflection testing standard. To better understand the differences in data produced by the two devices, FHWA sponsored research into one particular TSDD, the rolling wheel deflectometer (RWD). The study utilized the finite layer program ViscoWave to model both FWD and RWD loads to demonstrate the effect of their inherent differences on pavement deflections and other simulated parameters. In addition, ViscoWave was used to generate theoretical FWD and RWD deflections for a diverse set of pavement structures and subgrade conditions. The resulting deflections were used to develop correlations between the two devices, which were validated with side-by-side FWD and RWD field tests performed on 23 sites. The research determined that the differences between FWD and RWD deflections vary depending on pavement factors and loading characteristics. The two devices produced similar deflections on thicker, stiffer, lower-deflection pavements, while the FWD produced relatively higher deflections on thinner, weaker, higher-deflection pavements. Therefore, use of common FWD data analysis programs will produce different results, such as layer moduli, for TSDD devices. Advanced analysis routines capable of modeling the TSDD’s moving load and loading configurations are needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.