Abstract

To improve the accuracy and real-time performance of autonomous decision-making by the unmanned combat aerial vehicle (UCAV), a decision-making method combining the dynamic relational weight algorithm and moving time strategy is proposed, and trajectory prediction is added to maneuver decision-making. Considering the lack of continuity and diversity of air combat situation reflected by the constant weight in situation assessment, a dynamic relational weight algorithm is proposed to establish an air combat situation system and adjust the weight according to the current situation. Based on the dominance function, this method calculates the correlation degree of each subsituation and the total situation. According to the priority principle and information entropy theory, the hierarchical fitting function is proposed, the association expectation is calculated by using if-then rules, and the weight is dynamically adjusted. In trajectory prediction, the online sliding input module is introduced, and the long- and short-term memory (LSTM) network is used for real-time prediction. To further improve the prediction accuracy, the adaptive boosting (Ada) method is used to build the outer frame and compare with three traditional prediction networks. The results show that the prediction accuracy of Ada-LSTM is better. In the decision-making method, the moving time optimization strategy is adopted. To solve the problem of timeliness and optimization, each control variable is divided into 9 gradients, and there are 729 control schemes in the control sequence. Through contrast pursuit simulation experiments, it is verified that the maneuver decision method combining the dynamic relational weight algorithm and moving time strategy has a better accuracy and real-time performance. In the case of using prediction and not using prediction, the adaptive countermeasure simulation is carried out with the current more advanced Bayesian inference maneuvering decision-making scheme. The results show that the UCAV maneuvering decision-making ability combined with accurate prediction is better.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.