Abstract

This article considers a new method for generating a moving mesh which is suitable for the numerical solution of partial differential equations (PDEs) in several spatial dimensions. The mesh is obtained by taking the gradient of a (scalar) mesh potential function which satisfies an appropriate nonlinear parabolic partial differential equation. This method gives a new technique for performing $r$-adaptivity based on ideas from optimal transportation combined with the equidistribution principle applied to a (time-varying) scalar monitor function (used successfully in moving mesh methods in one-dimension). Detailed analysis of this new method is presented in which the convergence, regularity, and stability of the mesh is studied. Additionally, this new method is shown to be straightforward to program and implement, requiring the solution of only one simple scalar time-dependent equation in arbitrary dimension, with adaptivity along the boundaries handled automatically. We discuss three preexisting methods in the context of this work. Examples are presented in which either the monitor function is prescribed in advance, or it is given by the solution of a partial differential equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.