Abstract
We consider infinite-dimensional Hilbert space-valued random variables that are assumed to be temporal dependent in a broad sense. We prove a central limit theorem for the moving block bootstrap and for the tapered block bootstrap, and show that these block bootstrap procedures also provide consistent estimators of the long run covariance operator. Furthermore, we consider block bootstrap-based procedures for fully functional testing of the equality of mean functions between several independent functional time series. We establish validity of the block bootstrap methods in approximating the distribution of the statistic of interest under the null and show consistency of the block bootstrap-based tests under the alternative. The finite sample behaviour of the procedures is investigated by means of simulations. An application to a real-life dataset is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.