Abstract

The purpose of the study was to understand how force is controlled for impact movements such as golf putting. Expert players (10) and control subjects (10) executed a putt as accurately as possible, in order to reach a target distance of 1, 2, 3, or 4 m. Movements of the club were recorded at 200 Hz via a SELSPOT system. Overall, the results showed that, in order to increase club velocity at the moment of contact with the ball with increasing distance of the target, subjects increased the downswing (DS) amplitude maintaining DS movement time constant. The change in force required to reach the different distances seemed to rely on an adjustment of the magnitude of the motor command within the same time period. Furthermore, our results showed that the movement of putting consists primarily in specifying the amplitude of the Backswing (BS) as a function of the distance of the target. This gives rise to a motor impulse originating the force-time function required for an adequate DS movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.