Abstract

Limitations associated with global measures of function in patients with amyotrophic lateral sclerosis (ALS) and the qualitative nature of needle electromyography have stimulated the development of alternate means of monitoring disease severity and progression in ALS. Thus, the objective of this study was to examine the ability of one these techniques, decomposition-based quantitative electromyography (DQEMG), to obtain electrophysiological data, including motor unit number estimates (MUNEs), from a group of patients with ALS. The first dorsal interosseous and biceps brachii muscles were studied in 10 healthy subjects and 9 patients with ALS. Following the acquisition of a maximum M wave, needle- and surface-detected EMGs were collected simultaneously during 30-second contractions performed at 10% of the maximum voluntary contraction force to obtain motor unit potential (MUP) trains. DQEMG was then used to extract the surface-detected MUP associated with each MUP train, the mean size of which was divided into the maximum M wave to obtain a MUNE. The results suggest that quantitative electrophysiological data obtained using DQEMG are representative of the pathophysiological changes in the lower motor system in ALS patients, supporting its use in studies documenting the natural history and progression of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.