Abstract

The organization, distribution, and function of neural progenitor cells (NPCs) in the adult spinal cord during motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remain largely unknown. Using nestin promoter-controlled LacZ reporter transgenic mice and mutant G93A-SOD1 transgenic mice mimicking ALS, we showed that there was an increase of NPC proliferation, migration, and neurogenesis in the lumbar region of adult spinal cord in response to motor neuron degeneration. The proliferation of NPCs detected by bromodeoxyurindine incorporation and LacZ staining was restricted to the ependymal zone surrounding the central canal (EZ). Once the NPCs moved out from the EZ, they lost the proliferative capability but maintained migratory function vigorously. During ALS-like disease onset and progression, NPCs in the EZ migrated initially toward the dorsal horn direction and then to the ventral horn regions, where motor neurons have degenerated. More significantly, there was an increased de novo neurogenesis from NPCs during ALS-like disease onset and progression. The enhanced proliferation, migration, and neurogenesis of (from) NPCs in the adult spinal cord of ALS-like mice may play an important role in attempting to repair the degenerated motor neurons and restore the dysfunctional circuitry which resulted from the pathogenesis of mutant SOD1 in ALS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.