Abstract

BackgroundThere is growing evidence that repetitive transcranial magnetic stimulation (rTMS) can improve cognitive function in patients with major depressive disorder (MDD). Few biomarkers are currently available to predict cognitive response in MDD patients. This study aimed to examine whether cortical plasticity played an important role in improving cognitive deficits in MDD patients treated with rTMS. MethodsA total of 66 MDD patients and 53 healthy controls were recruited. MDD patients were randomly assigned to receive 10 Hz active or sham rTMS 5 days per week for 4 weeks. Cognitive function was assessed using the Repeatable Battery for assessing Neuropsychological Status (RBANS), while depressive symptoms were assessed with the Hamilton Rating Scale for Depression (HRSD-24) before and after treatment. We combined transcranial magnetic stimulation and muscle surface electrophysiological recording to measure plasticity in motor cortex areas in healthy controls at baseline and MDD patients before and after treatment. ResultsCompared with healthy controls, cortical plasticity was impaired in MDD patients. Moreover, cortical plasticity was correlated with RBANS total score at baseline in MDD patients. After 4-week 10 Hz rTMS treatment, the impaired cortical plasticity was restored to some extent. Interestingly, 10 Hz rTMS treatment produced effective therapeutic effects on immediate memory, attention, and RBANS total score. Pearson correlation analysis shows that improvements in plasticity were positively correlated with improvement of immediate memory and RBANS total score. ConclusionsOur results show for the first time that 10 Hz rTMS can effectively treat impaired cortical plasticity and cognitive impairment in MDD patients and that changes in plasticity and cognitive function are closely related, which may indicate that motor cortical plasticity may play a vital role in cognitive impairment and that cortical plasticity may serve as a potential predictive biomarker for cognitive improvement in MDD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.