Abstract

In this article, we suggest that motivation serves to anticipate the energy of the body and meet those needs before they arise, called allostasis. We describe motivation as the output of energy computations that include estimates about future energy/metabolic needs and the value of effort required for potential behaviors (i.e., whether the cost of effort is worthwhile). We bring neuroscience evidence to bear to support this hypothesis. We outline a system of brain networks that have been shown to be important for motivation, and focus in on one hub in this network, the anterior mid-cingulate cortex (aMCC), and discuss its importance for establishing motivation in the service of allostasis. We present evidence that the aMCC, positioned at the intersection of multiple brain networks, is wired to integrate signals relating to allostasis with its sensory consequences, termed interoception, as well as with cognitive control processes, sensory and motor functions. This integration guides the nervous system towards the optimal effort required to achieve a desired goal. Across a variety of task domains, we discuss the role of aMCC in motivation, including a) processing of the value of prior and expected rewards, b) assessment of energetic costs in the brain and the body, c) selectively learning and encoding prediction errors (unexpected changes) that are relevant for allostasis, d) computations for monitoring of internal states of the body and e) modulating the internal state of the body to prepare for action. Finally, we discuss the link between individual differences in aMCC processing and variation in two extreme ends of the range of motivational states, tenacity and apathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.