Abstract

Magnetically levitated robots can move without lubrication, they generally have advantages to the use in the various special environments such as in a dust-free room, in a vacuum, in a flammable atmosphere, and in vivo. Meanwhile, they have a disadvantage of small working volume corresponding to the allowable air gap between the levitated object and the electromagnets. In some cases, to construct a combination of a magnetically levitated robot (which can generate a fine motion) and an industrial robot (which can generate a coarse motion and has a comparatively large working volume) seems an effective way to expand the whole working volume. On that premise, we are developing an experimental system and simulator for collaborative work between a magnetically levitated robot and an industrial robot. This paper presents the system concept and the configuration of the simulator, and the result of a preliminary simulation experiment which has been performed to evaluate mainly two elements: the numerical magnetically levitated robot model and the numerical industrial robot model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.