Abstract

Red blood cells undergo continual deformation when traversing microvessels in living tissues. This may contribute to higher resistance to blood flow observed in living microvessels, compared with that in corresponding uniform glass tubes. We use a theoretical model to simulate single-file motion of red cells though capillaries with variable cross-sections, assuming axisymmetric geometry. Effects of cell membrane shear viscosity and elasticity are included, but bending resistance is neglected. Lubrication theory is used to describe the flow of surrounding plasma. When a red cell encounters a region of capillary narrowing, additional energy is dissipated, due to membrane viscosity, and due to narrowing of the lubrication layer, increasing the flow resistance. Predicted resistance to cell motion in a vessel with periodic constrictions (diameter varying between 5 microns and 4 microns) is roughly twice that in a uniform vessel with diameter 4.5 microns. Effects of transient red cell deformations may contribute significantly to blood flow resistance in living microvessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.