Abstract

Two-dimensional motion of fluid particles in an ideal fluid is studied in the framework of the differential geometry of a group of diffeomorphisms. First, the influence of small perturbations to the initial velocity field is investigated on the average distance of fluid particles between the original and the perturbed velocity fields. It is found that departure of the average distance from a linear time evolution is determined by the sectional curvature. Some illustrative examples are presented to show influence of the sign of the curvature. Next, stretching of line elements in turbulent flows is investigated, where the curvature is found to be negative on the average in this problem. This gives evidence of the exponential growth of stretching, which is obtained by an approach from a new direction. Numerical calculations have been carried out for comparison with these results. The ratio of the numerically obtained stretching exponent to the theoretical one is found to be around 1.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.