Abstract
This review describes recent progress in the fundamental understanding of deformable drop motion through porous media with well-defined microstructures, through rigorous first-principles hydrodynamical simulations and experiments. Tight squeezing conditions, when the drops are much larger than the pore throats, are particularly challenging numerically, as the drops nearly coat the porous material skeleton with small surface clearance, requiring very high surface resolution in the algorithms. Small-scale prototype problems for flow-induced drop motion through round capillaries and three-dimensional (3D) constrictions between solid particles, and for gravity-induced squeezing through round orifices and 3D constrictions, show how forcing above critical conditions is needed to overcome trapping. Scaling laws for the squeezing time are suggested. Large-scale multidrop/multiparticle simulations for emulsion flow through a random granular material with multiple drop breakup show that the drop phase generally moves faster than the carrier fluid; both phase velocities equilibrate much faster to the statistical steady state than does the drop-size distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.