Abstract

We study the hydrodynamic scaling limit for the Glauber-Kawasaki dynamics. It is known that, if the Kawasaki part is speeded up in a diffusive space-time scaling, one can derive the Allen-Cahn equation which is a kind of the reaction-diffusion equation in the limit. This paper concerns the scaling that the Glauber part, which governs the creation and annihilation of particles, is also speeded up but slower than the Kawasaki part. Under such scaling, we derive directly from the particle system the motion by mean curvature for the interfaces separating sparse and dense regions of particles as a combination of the hydrodynamic and sharp interface limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.