Abstract
We study numerically the asymmetric periodic orbits which emanate from the triangular equilibrium points of the restricted three-body problem under the assumption that the angular velocity ω varies and for the Sun–Jupiter mass distribution. The symmetric periodic orbits emanating from the collinear Lagrangian point L3, which are related to them, are also examined. The analytic determination of the initial conditions of the long- and short-period Trojan families around the equilibrium points, is given. The corresponding families were examined, for a combination of the mass ratio and the angular velocity (case of equal eigenfrequencies), and also for the critical value ω = 2 $$\sqrt2$$ , at which the triangular equilibria disappear by coalescing with the inner collinear equilibrium point L1. We also compute the horizontal and the vertical stability of these families for the angular velocity parameter ω under consideration. Series of horizontal–critical periodic orbits of the short-Trojan families with the angular velocity ω and the mass ratio μ as parameters, are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.