Abstract

Large-area periodically aligned Si nanowire (PASiNW) arrays have been fabricated on Si substrates via a templated catalytic chemical etching process. The diameter, length, packing density, and even the shape of Si nanowires (SiNWs) could be precisely controlled and tuned. A local coupling redox mechanism involving the reduction of H2O2 on silver particles and the dissolution of Si is responsible for formation of SiNWs. With the as-prepared SiNWs as templates, three kinds of PASiNW radial pn junction structures were fabricated on Si substrates via a solid-state phosphorous diffusion strategy and their applications in solar cells were also explored. The PASiNW radial pn junction-based solar cell with big diameter and interspace shows the highest power conversion efficiency (PCE) of 4.10% among the three kinds of devices. Further optimization, including surface passivation and electrode contact, is still needed for the higher efficiency PASiNW radial pn junction-based solar cells in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.