Abstract

AbstractA nonequilibrium thermodynamic approach has been developed for describing the emergence of fiber morphologies from a liquid crystalline polymer solution undergoing solvent evaporation, including fibrillar structures, concentric rings, and spiral structures. We utilized Matsuyama–Kato free energy for main‐chain liquid crystalline polymer (MCLCP) solutions, which is an extension of Maier–Saupe theory for nematic ordering and incorporates a chain‐stiffening, combined with Flory‐Huggins free energy of mixing. Temporal evolution of the concentration and nematic order parameters pertaining to the above free energy density of liquid crystalline polymer solution was simulated in the context of time‐dependent Ginzburg–Landau theory coupled with the solvent evaporation rate equation under the quasi‐steady state assumption. The emerged morphological patterns are discussed in relation to the phase diagram of the MCLCP solution and the rate of solvent evaporation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 429–435, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.