Abstract

High-performance low-cost catalysts are in high demand for the hydrogen evolution reaction (HER). In the present study, we reported that V1.11S2 materials with flower-like, flake-like, and porous morphologies were successfully synthesized by hydrothermal synthesis and subsequent calcination. The effects of morphology on hydrogen evolution performance were studied. Results show that flower-like V1.11S2 exhibits the best electrocatalytic activity for HER, achieving both high activity and preferable stability in 0.5 M H2SO4 solution. The main reason can be ascribed to the abundance of catalytically active sites and low charge transfer resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.