Abstract

Morphology-controlled monodispersed LiMnPO4 nanocrystals as high-performance cathode materials for Li-ion batteries have been successfully synthesized by a solvothermal method in a mixed solvent of water and polyethylene glycol (PEG). Morphology evolution of LiMnPO4 nanoparticles from a nanorod to a thick nanoplate (∼50 nm in thickness) and to a smaller thin nanoplate (20–30 nm in thickness) is observed by increasing the pH value of the reaction suspension. Electrochemical measurements confirm that the LiMnPO4 thin nanoplates display the best charge–discharge performance, thick nanoplates the intermediate, nanorods the worst, which can be mainly ascribed to the difference in their morphologies and particle sizes in three dimensions. Further modification of LiMnPO4 thin nanoplates with graphene gives rise to an improved electrochemical performance compared with conventional pyrolytic carbon coated ones. The LiMnPO4 thin nanoplate/graphene composites deliver a high capacity of 149 mA h g−1 at 0.1 C, 90 mA h g−1 at 1 C, and even 64 mA h g−1 at 5 C charge–discharge rate, with an excellent cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.