Abstract

Ultrasonic field can lead to cavitation bubbles explosion, which rises a high-frequency oscillation and generates a high-frequency current in semiconductor nanoparticles in suspension. However, the effect of nanoparticle morphology on ultrasonic-triggered H2 production is still unclear. To this end, herein, nanorods CeO2 (nrCeO2), CeO2 nanocubes (ncCeO2), and CeO2 nanospheres (nsCeO2) were successfully synthesized. Among them, one-dimensional nrCeO2 had the most abundant O-vacancies. As revealed by the COMSOL simulation, nanoparticle deformation was easier in nanorods compared with nanocubes and nanospheres, resulting in more efficient charge separation and facilitating H2 production reaction in nrCeO2. In detail, within a 5 h’ period, nrCeO2 presented the highest H2 production activity of 983.1 μmol g−1 h−1 with the positive charge (q+) trapping agent of CH3OH, and that of 278.1 μmol g−1 h−1 in pure water. This work presents a new understanding about the relationship between nanoparticle morphology and H2 production activity, and provides a promising, efficient, and clean H2 production approach, which can be further extended to multi-field coupling reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.