Abstract

Fine-tuning nano/micro-structural morphologies and their depth studies in small-molecule solar cells are key parameters in elevating device performances. In the current work, we focused on controlling the morphology of a small-molecule organic photovoltaic by treating its active layer film with solvent vapor annealing (SVA). For this project, the devices were made of all-small-molecule p-DTS(FBTTh2)2:PC71BM heterojunction films processed using different solvents for the vapor annealing. The different solvents resulted in different nano-domain packing structures and segregated phase separation as evidenced by detailed two-dimensional grazing-incidence wide-angle X-ray scattering (2D-GIWAXS) and atomic force microscopy (AFM) analyses. From the data, we demonstrated a correlation between the nanostructural morphology of the active layer film and the performance of the device and found an SVA condition that produced a p-DTS(FBTTh2)2:PC71BM blend system yielding an improved device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.