Abstract

Conocarpus is a buttonwood plant enriched with lignocellulosic biomass, which has high potential for various applications. In this study, different biomasses of the Conocarpus plant, such as, leaf fibers (CP–L), branches (CP–B) and trunk (CP–T), were examined collectively through characterization techniques. The chemical composition analysis showed that CP–T fibers have a higher cellulose content than CPL and CP–B fibers. Elementary analysis also detected versatile elements based on minerals such as Mg, Si, P, S, Cl, K and Ca in fiber with a high ash content. Based on the morphological analysis, the CP–T fiber with compact and striated characteristics can contribute more effectively to the reinforcement of composite materials. In addition, the particle size of the fibers increased with increasing crystallinity, which depends on the source of the fibers, being smaller in those obtained from leaves and greater in those obtained from the trunk. This finding showed that the size of the fiber is highly correlated with the stiffness of the fiber structure. In addition, all fibers regardless of their source have great thermal stability, with a high onset degradation temperature of 273.9–316.2 °C. In conclusion, Conocarpus biomass fibers, due to its advantageous properties, have a potential to be used as a bio-filler in polymer composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.