Abstract

BackgroundThere is a lack of understanding of the morphological characteristics of the cartilage-bone interface. Materials that are currently being used in tissue engineering do not adequately support the regeneration of bone and cartilage tissues. The present study aimed to explore the morphological characteristics of cartilage-bone transitional structures in the human knee joint and to design a biomimetic osteochondral scaffold based on morphological data.MethodsHistology, micro-computed tomography (micro-CT), and scanning electron microscopy (SEM) were used to investigate the microstructure of the cartilage-bone transitional structures. Morphological characteristics and their distribution were obtained and summarized into a biomimetic design. A three-dimensional model of a biomimetic osteochondral scaffold was CAD designed. A prototype of the resulting subchondral bone scaffold was constructed by stereolithography using resin.ResultsMicro-CT revealed that subchondral bone presented a gradually changing structure from the subchondral to spongy bone tissue. The subchondral bone plate was more compact with ~20 % porosity compared with ~60 % porosity for the spongy bone. Histology and SEM showed that cartilage was stabilized on the subchondral bone plate by conjunctions, imbedding, interlocking, and binding forces generated by collagen fibers. Some scattered defects allow blood vessel invasion and nutritional supply.ConclusionsThe subchondral bone plate is not an intact plate between the cartilage and bone cavity, and some scattered defects exist that allow blood vessel invasion and nutritional supply. This characteristic was used to design an osteochondral scaffold. This could be used to construct an osteochondral complex that is similar to native bones.

Highlights

  • There is a lack of understanding of the morphological characteristics of the cartilage-bone interface

  • The present study aimed to explore the morphological characteristics of cartilage-bone transitional structures, the micro-architectures and conjunctions of the osteochondral complex in the human knee joint, and to design a biomimetic osteochondral scaffold based on these morphological data

  • tissue mineral density (TMD) value increased slowly as the location of volume of interest (VOI) was moved away from the cartilage, with a maximal TMD value obtained at the plateau, which was 4.3 mm away from the cartilage surface (Fig. 3b)

Read more

Summary

Introduction

There is a lack of understanding of the morphological characteristics of the cartilage-bone interface. Materials that are currently being used in tissue engineering do not adequately support the regeneration of bone and cartilage tissues. The present study aimed to explore the morphological characteristics of cartilage-bone transitional structures in the human knee joint and to design a biomimetic osteochondral scaffold based on morphological data. Many three-dimensional (3D) osteochondral scaffolds have been designed using a number of heterogeneous materials. These osteochondral scaffolds have the potential to be used for repairs of the knee and for the treatment of osteoarthritis. The solution could be to design and build an osteochondral scaffold with a true biomimetic microarchitecture reflecting the morphology of the natural osteochondral complex, which is made of bone, cartilage, and their transitional structures. The transitional structures including the calcified cartilage zone (CCZ) and the subchondral bone plate provide the attachment of cartilage to bone, allow force transmission across the joint, and limit the diffusion from the subchondral bone [12, 13]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.