Abstract

In the present paper a simulation method is proposed for the evaluation of paths and lives of fatigue cracks. The simulation is based on an incremental crack extension procedure. At each increment the stress analysis ahead of a crack tip is carried out by the finite element method, and the next incremental crack-growth path is predicted by the first order perturbation method with the use of the local symmetry criterion. From the computational viewpoint, the step-by-step rezoning of finite element mesh subdivision is one of the most difficult processes of the simulation procedure. In order to overcome this difficulty, we shall use the modified quadtree method as an automatic mesh generation technique. Considerations are made for the proper mesh arrangement in the vicinity of a crack tip, where a special fine mesh pattern is embedded so that mixed mode stress intensity factors and the higher order coefficients of the near tip stress field parameters can accurately be obtained. Using the proposed method, we simulate the branched and curved fatigue crack growth in three-point-bending specimens. They show fairly good agreement with the experimental results. The simulation procedure is also applied to biaxially loaded cruciform joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.