Abstract
Mesoporous silicas with various morphologies and structures were synthesized with the aid of 2,2,4-trimethylpentane (TMP) in the presence of nonionic surfactant P123 [(EO)20(PO)70(EO)20] as a structure-directing agent under mild reaction conditions (HAc-NaAc buffer solution, pH 4.4). The ropelike particles formed by end-to-end interconnected nanorods were obtained at a TMP/P123 weight ratio of 0.5. It is noteworthy to mention that the mesoporous nanorods have channels running parallel to the short axis. The silica hollow spheres can be obtained at a higher TMP/P123 weight ratio because of the fusion of the primary nanorods around the interface of the O/W emulsion. Initial synthesis temperatures of 15, 25, and 40 degrees C can lead to mesoporous silicas with highly ordered 2D hexagonal mesostructure, vesicular mesostructure, and mesostructured cellular foams (MCF), respectively. The mesoporous silicas exhibit high adsorption capacity (up to 536 mg g(-1)) and very rapid (<5 min to reach equilibrium) lysozyme immobilization. More importantly, it is revealed that mesoporous silica hollow spheres with rugged surfaces can greatly accelerate the adsorption rate of the enzyme during the adsorption process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.