Abstract

Poly(3-octylthiophene) (P3OT) was synthesized by direct oxidation of 3-octylthiophene with FeCl 3 as oxidant. Molecular weight of P3OT polymer was measured by size exclusion chromatography. Homogeneous poly(3-octylthiophene) (P3OT) and polystyrene (PS) composite films have been synthesized by spin-coating technique from toluene with different polymer concentrations. The doped films were obtained by immersion for 30 s in a 0.3 M ferric chloride (FeCl 3) solution in nitromethane. A classical percolation phenomenon was observed in the electrical properties of these blends, it was smaller than 5% of P3OT in the blend. Surface topographical changes were studied by atomic force microscopy (AFM). AFM images of the composite films revealed surface morphology variation as a function of different P3OT concentration in PS, phase segregation was observed, and PS is shown to segregate to the surface of the films. The higher PS solubility, in comparison with the P3OT solubility, in toluene resulted in PS/P3OT bilayers. The films exhibited pit and island like topography, the pit size changed with the polymer concentration. Optical absorption properties of the polymeric films were analyzed in pristine and doped state. In doped state, the bipolaronic bands at 0.5 and 1.6 eV are shown in a 4% conductive polymer in the PS/P3OT film. Finally thermogravimetric analysis was also made on the simple and composite polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.