Abstract

Bacteria from the genus Bacillus are able to transform into metabolically dormant states called (endo) spores in response to nutrient deprivation and other harsh conditions. These morphologically distinct spores are fascinating constructs, amongst the most durable cells in nature, and have attracted attention owing to their relevance in food-related illnesses and bioterrorism. Observing the course of bacterial spore formation (sporulation) spatially, temporally and mechanically, from the vegetative cell to a mature spore, is critical for a better understanding of this process. Here, we present a fast and versatile strategy for monitoring both the morphological and mechanical changes of Bacillus cereus bacteria at the nanoscale using atomic force microscopy. Through a strategy of imaging and nanomechanical mapping, we show the morphogenesis of the endospore and released mature endospore. Finally, we investigate individual spores to characterize their surface mechanically. The progression in elasticity coupled with a similarity of characteristic distributions between the incipient endospores and the formed spores show these distinct stages. Taken together, our data demonstrates the power of atomic force microscopy applied in microbiology for probing this important biological process at the single cell scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.