Abstract

A human salivary intercalated duct cell line (HSG) is capable of morphological change to acinar-type cells, and of salivary amylase (AMY1) expression, by culturing on basement membrane extracts (BME). The aim of this study was to determine the critical conditions for functional and morphological differentiation of HSG cells and to establish if the processes are related. Cells were grown on BMEs that had different protein concentrations and growth factor content, and then examined with respect to morphology and AMY1 expression. To investigate the role of intracellular calcium in amylase expression, a pcDNA3.1-TRPC1alpha construct was used to overexpress htrp1alpha, which mediates the store-operated calcium entry in HSG cells. Expression of the AMY1, TRPC1alpha and beta genes was quantified by means of real time RT-PCR. Growth factor-reduced BME (12.8 mg/ml) induced multicellular acinar structures with lumen formation but without stimulation of either AMY1 or TRPC1. HSG cells cultured on higher concentration BME (17.5 or 16.4 mg/ml) formed reticular networks. AMY1 expression increased both on growth factor-reduced BME (17.5 mg/ml: 3.0-fold, P < 0.001) and on regular BME (16.4 mg/ml: 3.7-fold, P < 0.001) accompanied by a slight increase in expression of TRPC1alpha and TRPC1beta. Overexpression of htrp1alpha did not cause any significant changes in AMY expression, though it attenuated the BME (17.5 mg/ml)-induced AMY1 upregulation. Overall, the higher protein concentration BME favors amylase expression in HSG cells, whereas the lower concentration causes marked morphological changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.