Abstract

To obtain the morphological and biomechanical remodeling of portal veins in swine with portal hypertension (PHT), so as to provide some mechanical references and theoretical basis for clinical practice about PHT. Twenty white pigs were used in this study, 14 of them were subjected to both carbon tetrachloride- and pentobarbital-containing diet to induce experimental liver cirrhosis and PHT, and the remaining animals served as the normal controls. The morphological remodeling of portal veins was observed. Endothelial nitric oxide synthase expression profile in the vessel wall was assessed at both mRNA and protein level. The biomechanical changes of the hepatic portal veins were evaluated through assessing the following indicators: the incremental elastic modulus, pressure-strain elastic modulus, volume elastic modulus, and the incremental compliance. The swine PHT model was successfully established. The percentages for the microstructural components and the histological data significantly changed in the experimental group. Endothelial nitric oxide synthase expression was significantly downregulated in the portal veins of the experimental group. Three incremental elastic moduli (the incremental elastic modulus, pressure-strain elastic modulus, and volume elastic modulus) of the portal veins from PHT animals were significantly larger than those of the controls (P < 0.05), whereas the incremental compliance of hepatic portal vein decreased. Our study suggests that the morphological and biomechanical properties of swine hepatic portal veins change significantly during the PHT process, which may play a critical role in the development of PHT and serve as potential therapeutic targets during clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.