Abstract

Vast bay-type tidal inlets can be found along the coastal zones of China. They are generally suitable for deep water channels and large harbors because of the presence of large water depth and good mooring conditions. The deep channel, in front of the head of Caofeidian Island in Bohai Bay, China, is a typical bay-type tidal inlet system. The tidal current, a type of reverse flow, makes the key contribution to maintain the deep water depth. The co-action of waves and tidal currents is the main dynamic force for sediment motion. Waves have significant influence on the sediment concentration. Based on the characteristics of waves, tidal currents, sediment and seabed evolution in Caofeidian sea area, a 2D mathematical model for sediment transport under influence of waves and tidal currents is developed to study the development schemes of the Caofeidian Harbor. The model has been verified for spring and neap tides, in winter as well as in summer of 2006. The calculated tidal stages, flow velocities, flow directions and sediment concentrations at 15 stations are in good agreement with the observations. Furthermore, the calculated data on pattern and magnitude of sedimentation and erosion in the related area agree well with the observations. This model has been used to study the effects of the reclamation scheme for Caofeidian Harbor on the hydrodynamic environment, sediment transport and morphological changes. Attentions are paid to the project inducing changes of flow velocities and morphology in the deep channel at the south side of Caofeidian foreland, in the Laolonggou channel and in various harbor basins. The conclusions can provide the important foundation for the protection and use of bay-type tidal inlets and the development of harbor industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.