Abstract

Changes in structural plasticity produced by the chronic exposure to drugs of abuse, such as alterations in dendritic spine densities, participate in the development of maladaptive learning processes leading to drug addiction. Understanding the neurobiological mechanisms involved in these aberrant changes is crucial to clarify the neurobiological substrate of addiction. Drug-induced locomotor sensitization has been widely accepted as a useful animal model to study these mechanisms related to drug addiction. We have evaluated the changes in structural plasticity in the mesocorticolimbic system involved in morphine-induced locomotor sensitization. The role of the cannabinoid receptor type 1 (CB1-R) in these neuroplastic alterations has also been studied using CB1-R-deficient (CB1-R KO) mice. Structural plasticity changes promoted by morphine are a highly dynamic phenomenon that evolves during the entire time course of the behavioral sensitization in wild-type (WT) animals. The different phases of the sensitization process were related to specific changes in connectivity between neurons revealed by modifications in dendritic spines in specific areas of the mesocorticolimbic system. Moreover, the lack of morphine-induced locomotor sensitization in CB1-R KO mice was accompanied by abnormal alterations in structural plasticity in the same mesocorticolimbic areas. These specific structural plasticity changes mediated by CB1-R activity seem necessary for the normal progression of morphine-induced locomotor sensitization and could play a critical role in the addictive process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.