Abstract

The nucleus accumbens (NAc) plays a critical role in addictive drug-induced behavioral changes. d-serine is present at high levels in the brain and is involved in the regulation of N-methyl-d-aspartate glutamate (NMDA)-dependent synaptic activity. In this study, we aimed to examine the involvement of d-serine in morphine addiction. Morphine decreased the NMDA receptor-mediated excitatory postsynaptic currents and excitability of GABAergic neurons in the NAc, while exogenous d-serine alleviated the effects of morphine. Morphine reduced extracellular d-serine levels in rat NAc or in primary culture of astrocytes through inhibition of intracellular Ca2+ signals and blockade of d-serine release from cell vesicles. Morphine induced robust internalization of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate acid receptor (AMPAR) in primary cultured astrocytes. Moreover, administration of exogenous d-serine to rats inhibited the development of locomotor sensitization to morphine, attenuated the morphine-induced potentiation on conditioned place preference and suppressed the morphine-enhanced expression of p-CREB and ΔFosB in the NAc. Overall, our results showed that morphine inhibited d-serine release from astrocytes through modulation of AMPAR-mediated Ca2+ influx, and led to the inhibition of postsynaptic excitability of GABAergic neurons in the NAc. This work may provide a new insight into the underlying mechanisms of morphine addiction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.