Abstract

We investigated whether the timing of high light availability as sun patches within forest gaps, independent of total or peak photosynthetic photon flux (PPF), influences the physiology and growth of four coexisting birch species (Betula alleghaniensis, B. lenta, B. papyrifera, and B. populifolia). Birch seedlings were grown for two years along either the east or west sides of experimental gap structures and at two moisture levels. Seedlings positioned in the west received sun patches earlier in the day than those in the east, and environmental conditions for carbon gain were generally more favorable during the earlier sunpatches in the west; air and leaf temperatures were lower, and relative humidity higher, relative to conditions during sun patches in the cats, simulating patterns observed in natural forest gaps. Seedlings positioned along the west edges of gaps fixed more carbon earlier in the day than those in the east, and in many cases, peak net photosynthetic rates were greater for west positioned seedlings. In year two, leaf-level integrated daily carbon gain was greater for west- than eastpositioned plants, and for the most pioneer species, B. populifolia, differences between west and east seedlings were greatest at lower soil moisture levels. Despite some small effects on leaf gas exchange, the timing of high light availability, and its temporal congruence with other factors critical to carbon gain, had no significant effects on first or second year seedling biomass. The responses of birch seedlings to controlled variations in the timing of high light availability were generally much smaller than birch seedling responses to variations in other components of daily light regimes such as total integrated and peak PPF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.