Abstract

We study the axial anomaly defined on a finite-size lattice by using a Dirac operator which obeys the Ginsparg–Wilson relation. When the gauge group is U(1), we show that the basic structure of axial anomaly on the infinite lattice, which can be deduced by a cohomological analysis, persists even on (sufficiently large) finite-size lattices. For non-Abelian gauge groups, we propose a conjecture on a possible form of axial anomaly on the infinite lattice, which holds to all orders in perturbation theory. With this conjecture, we show that a structure of the axial anomaly on finite-size lattices is again basically identical to that on the infinite lattice. Our analysis with the Ginsparg–Wilson–Dirac operator indicates that, in appropriate frameworks, the basic structure of axial anomaly is quite robust and it persists even in a system with finite ultraviolet and infrared cutoffs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.