Abstract

ABSTRACT Hydrological drought forecasting is a key component in water resources modeling as it relates directly to water availability. It is crucial in managing and operating dams, which are constructed in rivers. In this study, multiple extreme learning machines (ELMs) are utilized to forecast hydrological drought. For this purpose, the standardized hydrological drought index (SHDI) and standardized precipitation index (SPI) are computed for 1 and 3 aggregated months. Two scenarios are considered, namely, using SHDI in previous months as the input, and using SHDI and SPI in previous months as the input. Considering these scenarios and two timescales (1 and 3 months), 12 input–output combinations are generated. Then, five different ELMs and support vector machine models are used to predict the SHDI on both timescales. For preprocessing of the data, the wavelet is hybridized with the models, leading to 144 different models. The results indicate that ELMs are capable of forecasting SHDI with high precision. The self-adaptive differential evolution ELM outperforms the other models and the wavelet has a highly positive effect on the model performance, especially in error reduction. In general, using ELMs in hydrological drought forecasting is promising and this model can feasibly be used for this purpose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.