Abstract
Abstract MontePython is a parameter inference package for cosmology. We present the latest development of the code over the past couple of years. We explain, in particular, two new ingredients both contributing to improve the performance of Metropolis–Hastings sampling: an adaptation algorithm for the jumping factor, and a calculation of the inverse Fisher matrix, which can be used as a proposal density. We present several examples to show that these features speed up convergence and can save many hundreds of CPU-hours in the case of difficult runs, with a poor prior knowledge of the covariance matrix. We also summarize all the functionalities of MontePython in the current release, including new likelihoods and plotting options.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.