Abstract

Graphite-epoxy cross-ply laminates generally show multiple fracture of the transverse ply at higher applied stress. This phenomenon is described by means of a Monte Carlo simulation method based on the assumption that the strength of the transverse ply obeys a two-parameter Weibull distribution function. The main results show that the smaller the scatter of strength of the 90°-ply (i.e. the larger the shape parameter at a constant mean strength of the Weibull distribution), the higher becomes the threshold for the multiple fracture to occur, and the more rapidly the length of 90°-ply segments decreases with increasing applied stress once multiple fracture takes place. The methods to determine the shape and scale parameters of the Weibull distribution for the strength of the 90°-ply proposed by Manderset al. and Peters are proved to be useful even for a small number of test specimens. When the interfacial bond strength between 0°- and 90°-plies is low, saturation of 90°-ply cracking occurs at higher applied stress. The stress-carrying capacity and stiffness of the composites as a whole are reduced by multiple fracture of the 90°-ply. This reduction is more pronounced at increasing applied stress or at a larger number of transverse cracks, especially when the interfacial bond strength is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.