Abstract

The colossal solution spaces of most configurable systems make intractable their exhaustive exploration. Accordingly, relevant analyses remain open research problems. There exist analyses alternatives such as SAT solving or constraint programming. However, none of them have explored simulation-based methods. Monte Carlo-based decision making is a simulation-based method for dealing with colossal solution spaces using randomness. This paper proposes a conceptual framework that tackles various of those analyses using Monte Carlo methods, which have proven to succeed in vast search spaces (e.g., game theory). Our general framework is described formally, and its flexibility to cope with a diversity of analysis problems is discussed (e.g., finding defective configurations, feature model reverse engineering or getting optimal performance configurations). Additionally, we present a Python implementation of the framework that shows the feasibility of our proposal. With this contribution, we envision that different problems can be addressed using Monte Carlo simulations and that our framework can be used to advance the state of the art a step forward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.