Abstract

Metallic quantum critical phenomena are believed to play a key role in many strongly correlated materials, including high-temperature superconductors. Theoretically, the problem of quantum criticality in the presence of a Fermi surface has proven to be highly challenging. However, it has recently been realized that many models used to describe such systems are amenable to numerically exact solution by quantum Monte Carlo (QMC) techniques, without suffering from the fermion sign problem. In this review, we examine the status of the understanding of metallic quantum criticality and the recent progress made by QMC simulations. We focus on the cases of spin-density wave and Ising nematic criticality. We describe the results obtained so far and their implications for superconductivity, non-Fermi liquid behavior, and transport near metallic quantum critical points. Some of the outstanding puzzles and future directions are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.