Abstract

Determination of ultrasound scattering and intrinsic attenuations in heterogeneous media is of importance from material characterization to geophysical applications. Here, we present an efficient inverse method within a finite-size scattering medium, where boundary reflection plays a crucial role. To fit the energy profile of scattered coda waves, we solve the acoustic radiative-transfer equation by Monte Carlo simulations for cylinder and slab geometries, under the isotropic scattering approximation. We show that the fit with the simplistic radiative-transfer solution in an infinite medium may result in underestimated values of the scattering mean free path, ${l}_{s}$, and absorption, ${Q}_{i}^{\ensuremath{-}1}$, by up to 40%. Our main finding is anomalous transport behavior in thin slab samples, where the ballistic peak and the diffusionlike one are merged into one single peak. This anomalous behavior, related to a wave-focusing effect in the forward direction, can mislead the inverse process and lead to an overestimation of ${l}_{s}$ by more than 200%. We compare simulated energy profiles with ultrasound envelopes obtained in a polycrystal-like granite slab from the ballistic to the diffusive regime. The ${l}_{s}$ deduced from off-axis detections agrees with that estimated from the correlation length of the shear-wave velocity by structural imaging analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.