Abstract

Based on the migration-coalescence mechanism for helium bubble growth in a material, the evolution of helium depth distribution during annealing is simulated by the Monte Carlo method. The factors that influence the evolution are studied. The results show that the initial concentration and radius of the helium bubble can affect the evolution of He depth distribution, while the annealing temperature has influence only on the evolution rate but little on the final depth distribution of helium. It is also shown that the evolution of the system turns to slow down gradually with the annealing time going.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.