Abstract

Scattering from dielectric one-dimensional (1-D) random rough surfaces at near grazing incidence is studied for both TE and TM cases. To obtain accurate results at incidence angles of 80/spl deg/-85/spl deg/, we use long surface lengths of up to 1000 wavelengths. Numerical results are illustrated for dielectric surfaces corresponding to soil surfaces with various moisture contents. Results indicate that TM backscattering is much larger than that of TE backscattering. The ratio of TM to TE backscattering increases as a function of soil moisture and can be used as an indicator of soil moisture in remote sensing applications. However, the ratio of TM to TE backscattering is much lower than that predicted by the small perturbation method. To facilitate computation of scattering by such long surfaces, the previously developed banded-matrix iteration approach/canonical grid method (BMIA/CG) has been extended to dielectric surfaces. The numerical algorithm consists of translating the nonnear-field interaction to a flat surface and the interaction subsequently calculated by fast Fourier transform (FFT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.