Abstract
We use Monte Carlo time-dependent simulations of light pulse propagation through turbulent water laden with particles to investigate the application of Multiple Field Of View (MFOV) lidar to detect and characterize oceanic turbulence. Inhomogeneities in the refractive index induced by temperature fluctuations in turbulent ocean flows scatter light in near-forward angles, thus affecting the near-forward part of oceanic water scattering phase function. Our results show that the oceanic turbulent signal can be detected by analyzing the returns from a MFOV lidar, after re-scaling the particulate back scattering phase function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.